

Audit Report
RAIFI Yield Vesting
June 2025

SHA256

ed2ff4153578c12cb9c1496865513327c218608fecdfd661e19adeb87212c25c

Audited by © cyberscope

RAIFI Yield Vesting Audit 1

Table of Contents
Table of Contents 1
Risk Classification 3
Review 4

Audit Updates 4
Source Files 4

Findings Breakdown 5
Diagnostics 6

MES - Misplaced Else Statement 8
Description 8
Recommendation 8

CO - Code Optimization 9
Description 9
Recommendation 9

DTR - Duplicate Token Reference 10
Description 10
Recommendation 10

MEE - Missing Events Emission 11
Description 11
Recommendation 11

MTM - Missing Transfer Mechanism 12
Description 12
Recommendation 12

RSML - Redundant SafeMath Library 13
Description 13
Recommendation 13

TSI - Tokens Sufficiency Insurance 14
Description 14
Recommendation 14

UF - Unused Functionalities 15
Description 15
Recommendation 15

USV - Unused State Variables 16
Description 16
Recommendation 16

L04 - Conformance to Solidity Naming Conventions 17
Description 17
Recommendation 17

L09 - Dead Code Elimination 18
Description 18

RAIFI Yield Vesting Audit 2

Recommendation 18
L16 - Validate Variable Setters 19

Description 19
Recommendation 19

L19 - Stable Compiler Version 20
Description 20
Recommendation 20

L20 - Succeeded Transfer Check 21
Description 21
Recommendation 21

Functions Analysis 22
Inheritance Graph 25
Flow Graph 26
Summary 27
Disclaimer 28
About Cyberscope 29

RAIFI Yield Vesting Audit 3

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

RAIFI Yield Vesting Audit 4

Review

Audit Updates

Initial Audit 12 May 2025

Corrected Phase 2 18 Jun 2025

Source Files

Filename SHA256

YieldVesting.sol ed2ff4153578c12cb9c1496865513327c218608fecdfd661e19adeb8721

2c25c

RAIFI Yield Vesting Audit 5

Findings Breakdown

⬤ Critical 1

⬤ Medium 0

⬤ Minor / Informative 13

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 1 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 13 0 0 0

RAIFI Yield Vesting Audit 6

Diagnostics
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ MES Misplaced Else Statement Unresolved

⬤ CO Code Optimization Unresolved

⬤ DTR Duplicate Token Reference Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ MTM Missing Transfer Mechanism Unresolved

⬤ RSML Redundant SafeMath Library Unresolved

⬤ TSI Tokens Sufficiency Insurance Unresolved

⬤ UF Unused Functionalities Unresolved

⬤ USV Unused State Variables Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L16 Validate Variable Setters Unresolved

RAIFI Yield Vesting Audit 7

⬤ L19 Stable Compiler Version Unresolved

⬤ L20 Succeeded Transfer Check Unresolved

RAIFI Yield Vesting Audit 8

MES - Misplaced Else Statement

Criticality Critical

Location YieldVesting.sol#L548

Status Unresolved

Description

The else statement has been misplaced and is currently associated with the inner if

condition checking whether remaining == 0 . However, it is intended to handle the case

where the vesting schedule is active and the remaining amount is not zero. Therefore its

execution is not utilized according to the expected design.

if (block.timestamp >= vesting.startTime.add(vesting.duration)) {

uint256 remaining = vesting.totalReward.sub(vesting.releasedAmount);

if (remaining > 0) {

vesting.releasedAmount = vesting.totalReward;

balance = balance.add(remaining);

emit VestingReleased(user, i, remaining, vesting.rewardType);

}

else {

uint256 timeElapsed = block.timestamp.sub(vesting.startTime);

uint256 releaseableAmount =

vesting.totalReward.mul(timeElapsed).div(vesting.duration).sub(vesting.release

dAmount);

if (releaseableAmount > 0) {

vesting.releasedAmount = vesting.releasedAmount.add(releaseableAmount);

balance = balance.add(releaseableAmount);

emit VestingReleased(user, i, releaseableAmount, vesting.rewardType);

}

}

}

Recommendation

The team is advised to review the control flow structure and ensure the else is correctly

aligned with the outer if condition to reflect the intended logic.

RAIFI Yield Vesting Audit 9

CO - Code Optimization

Criticality Minor / Informative

Location YieldVesting.sol#L568

Status Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it

becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer

operations.

function getUserVestingEntries(address user, string memory _rewardTypeFilter)

external view returns (VestingEntry[] memory) {

...

}

Recommendation

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it.

RAIFI Yield Vesting Audit 10

DTR - Duplicate Token Reference

Criticality Minor / Informative

Location YieldVesting.sol#L485,486

Status Unresolved

Description

The constructor initializes both rai and RAI variables using the same address,

resulting in a redundant reference to the same token. This duplication may cause confusion

and increase the risk of inconsistencies in the code base.

rai=_rai;

RAI = IERC20(_rai);

Recommendation

The team is advised to retain a single reference to the token. Removing unnecessary

duplication will improve code clarity and reduce future errors.

RAIFI Yield Vesting Audit 11

MEE - Missing Events Emission

Criticality Minor / Informative

Location YieldVesting.sol#L483,592

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

else if (_contract == CONTRACTS.RAI) { // 3

rai=_address;

RAI = IERC20(_address);

} else if(_contract == CONTRACTS.BOND){

bondContractAddress=_address;

}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

RAIFI Yield Vesting Audit 12

MTM - Missing Transfer Mechanism

Criticality Minor / Informative

Location YieldVesting.sol#L519

Status Unresolved

Description

The addToRaiDAOFund function updates the internal variable raiDAOFund by

increasing it with the specified amount, however it does not perform an actual token

transfer. As a result, the internal state may become inconsistent with the contract's actual

token balance.

function addToRaiDAOFund(uint256 amount) external onlyOwner {

raiDAOFund = raiDAOFund.add(amount);

emit RaiDAOFundUpdated(amount);

}

Recommendation

The team is advised to revise the transfer mechanism within the function to ensure the

specified amount is properly transferred to the contract, maintaining consistency between

recorded balances and actual holdings.

RAIFI Yield Vesting Audit 13

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location YieldVesting.sol

Status Unresolved

Description

SafeMath is a popular Solidity library that provides a set of functions for performing

common arithmetic operations in a way that is resistant to integer overflows and

underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic

operations revert to underflow and overflow. As a result, the native functionality of the

Solidity operations replaces the SafeMath library. Hence, the usage of the SafeMath library

adds complexity, overhead and increases gas consumption unnecessarily in cases where

the explanatory error message is not used.

library SafeMath {...}

Recommendation

The team is advised to remove the SafeMath library in cases where the revert error

message is not used. Since the version of the contract is greater than 0.8.0 then the

pure Solidity arithmetic operations produce the same result.

If the previous functionality is required, then the contract could exploit the unchecked {

... } statement.

Read more about the breaking change on

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking

-changes.

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes

RAIFI Yield Vesting Audit 14

TSI - Tokens Sufficiency Insurance

Criticality Minor / Informative

Location YieldVesting.sol#L524

Status Unresolved

Description

The tokens are not held within the contract itself. Instead, the contract is designed to

provide the tokens from an external administrator. While external administration can provide

flexibility, it introduces a dependency on the administrator's actions, which can lead to

various issues and centralization risks.

function addVestingEntry(address user, uint256 amount, uint256 duration,

string memory rewardType) external onlyAuthorized {

uint256 vestingId = nextVestingId++;

vestingEntries[user][vestingId] = VestingEntry({

totalReward: amount,

startTime: block.timestamp,

duration: duration,

releasedAmount: 0,

rewardType: rewardType

});

emit VestingAdded(user, vestingId, amount, duration, rewardType);

}

Recommendation

It is recommended to consider implementing a more decentralized and automated

approach for handling the contract tokens. One possible solution is to hold the tokens

within the contract itself. If the contract guarantees the process it can enhance its reliability,

security, and participant trust, ultimately leading to a more successful and efficient process.

RAIFI Yield Vesting Audit 15

UF - Unused Functionalities

Criticality Minor / Informative

Location YieldVesting.sol#L503,509,514,519

Status Unresolved

Description

The contract includes methods that are not utilized during execution. The presence of such

unused functions increases the overall code size and reduces readability.

modifier onlyPartnerBurnContract() {

require(msg.sender == partnerBurnContract, "Only Partner Burn Contract can

call this function");

_;

}

function addAllowedToken(address token) external onlyOwner {

allowedTokens[token] = true;

emit AllowedTokenAdded(token);

}

function updateTokenPrice(address token, uint256 price) external onlyOwner {

tokenPrices[token] = price;

emit TokenPriceUpdated(token, price);

}

function addToRaiDAOFund(uint256 amount) external onlyOwner {

raiDAOFund = raiDAOFund.add(amount);

emit RaiDAOFundUpdated(amount);

}

Recommendation

The team is advised to review and remove any redundant or unused methods to improve

code clarity and maintainability.

RAIFI Yield Vesting Audit 16

USV - Unused State Variables

Criticality Minor / Informative

Location YieldVesting.sol#L491

Status Unresolved

Description

The contract defines state variables which are not used duringthe execution flow. Unused

state variables increase the contract’s bytecode size and can hinder readability and

maintainability.

vestingSpeeds[180] = 0;

vestingSpeeds[150] = 5;

vestingSpeeds[100] = 10;

vestingSpeeds[60] = 20;

vestingSpeeds[30] = 25;

vestingSpeeds[15] = 25;

Recommendation

The team is advised to remove redundancies to reduce deployment costs and improve

overall code clarity.

RAIFI Yield Vesting Audit 17

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location YieldVesting.sol#L465,535,564,592

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

IERC20 public RAI

string memory _rewardTypeFilter

CONTRACTS _contract

address _address

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

RAIFI Yield Vesting Audit 18

L09 - Dead Code Elimination

Criticality Minor / Informative

Location YieldVesting.sol#L349,362

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or

reached during normal contract execution. Dead code can occur for a variety of reasons,

such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

function _reentrancyGuardEntered() internal view returns (bool) {

 return _status == ENTERED;

 }

function _contextSuffixLength() internal view virtual returns (uint256)

{

 return 0;

 }

Recommendation

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

RAIFI Yield Vesting Audit 19

L16 - Validate Variable Setters

Criticality Minor / Informative

Location YieldVesting.sol#L485,487,488,489,490,594

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

rai=_rai

partnerTokenWallet = _partnerTokenWallet

contributionRewardsContract = _contributionRewardsContract

partnerBurnContract = _partnerBurnContract

bondContractAddress=_bondContractAddress

partnerTokenWallet = _address

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

RAIFI Yield Vesting Audit 20

L19 - Stable Compiler Version

Criticality Minor / Informative

Location YieldVesting.sol#L4

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.20;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

RAIFI Yield Vesting Audit 21

L20 - Succeeded Transfer Check

Criticality Minor / Informative

Location YieldVesting.sol#L561

Status Unresolved

Description

According to the ERC20 specification, the transfer methods should be checked if the result

is successful. Otherwise, the contract may wrongly assume that the transfer has been

established.

RAI.transfer(user, balance)

Recommendation

The contract should check if the result of the transfer methods is successful. The team is

advised to check the SafeERC20 library from the Openzeppelin library.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

RAIFI Yield Vesting Audit 22

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

IERC20 Interface

 totalSupply External -

 balanceOf External -

 transfer External ✓ -

 allowance External -

 approve External ✓ -

 transferFrom External ✓ -

SafeMath Library

 tryAdd Internal

 trySub Internal

 tryMul Internal

 tryDiv Internal

 tryMod Internal

 add Internal

 sub Internal

 mul Internal

 div Internal

 mod Internal

RAIFI Yield Vesting Audit 23

 sub Internal

 div Internal

 mod Internal

ReentrancyGua
rd

Implementation

 Public ✓ -

 _nonReentrantBefore Private ✓

 _nonReentrantAfter Private ✓

 _reentrancyGuardEntered Internal

Context Implementation

 _msgSender Internal

 _msgData Internal

 _contextSuffixLength Internal

Ownable Implementation Context

 Public ✓ -

 owner Public -

 _checkOwner Internal

 renounceOwnership Public ✓ onlyOwner

 transferOwnership Public ✓ onlyOwner

 _transferOwnership Internal ✓

YieldVesting Implementation Ownable,
ReentrancyG
uard

RAIFI Yield Vesting Audit 24

 Public ✓ Ownable

 addAllowedToken External ✓ onlyOwner

 updateTokenPrice External ✓ onlyOwner

 addToRaiDAOFund External ✓ onlyOwner

 addVestingEntry External ✓ onlyAuthorized

 releaseVesting External ✓ nonReentrant

 getUserVestingEntries External -

 setContract External ✓ onlyOwner

RAIFI Yield Vesting Audit 25

Inheritance Graph

RAIFI Yield Vesting Audit 26

Flow Graph

RAIFI Yield Vesting Audit 27

Summary
RAIFI contract implements a vesting mechanism. This audit investigates security issues,

business logic concerns and potential improvements.

RAIFI Yield Vesting Audit 28

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Findings Breakdown
	Diagnostics
	MES - Misplaced Else Statement
	Description
	Recommendation

	
	CO - Code Optimization
	Description
	Recommendation

	
	DTR - Duplicate Token Reference
	Description
	Recommendation

	
	MEE - Missing Events Emission
	Description
	Recommendation

	
	MTM - Missing Transfer Mechanism
	Description
	Recommendation

	
	RSML - Redundant SafeMath Library
	Description
	Recommendation

	
	TSI - Tokens Sufficiency Insurance
	Description
	Recommendation

	
	UF - Unused Functionalities
	Description
	Recommendation

	
	USV - Unused State Variables
	Description
	Recommendation

	
	L04 - Conformance to Solidity Naming Conventions
	Description
	Recommendation

	L09 - Dead Code Elimination
	Description
	Recommendation

	
	L16 - Validate Variable Setters
	Description
	Recommendation

	
	L19 - Stable Compiler Version
	Description
	Recommendation

	
	L20 - Succeeded Transfer Check
	Description
	Recommendation

	Functions Analysis
	Inheritance Graph
	Flow Graph
	Summary
	Disclaimer
	About Cyberscope

