

Audit Report
RAIFI Staking
June 2025

SHA256

ca0a1e7ef15df81b8c455ab2222c1ee6b8af4c6b84c21b19e00867545b75958b

Audited by © cyberscope

RAIFI Staking Audit 1

Table of Contents
Table of Contents 1
Risk Classification 3
Review 4

Audit Updates 4
Source Files 4

Contract Readability Comment 5
Findings Breakdown 6
Diagnostics 7

ETM - Excessive Token Mint 8
Description 9
Recommendation 9

IGU - Inconsistent Gons Update 10
Description 10
Recommendation 10

MBD - Missing Bonus Deposit 11
Description 11
Recommendation 11

MCS - Missing Code Segments 12
Description 12
Recommendation 12

PGA - Potential Griefing Attack 13
Description 13
Recommendation 13

UTPD - Unverified Third Party Dependencies 14
Description 14
Recommendation 14

MEM - Misleading Error Message 15
Description 15
Recommendation 15

MDA - Misrepresented Distribution Amount 16
Description 16
Recommendation 16

MAC - Missing Access Control 17
Description 17
Recommendation 17

MEM - Missing Error Messages 18
Description 18
Recommendation 18

MEE - Missing Events Emission 19

RAIFI Staking Audit 2

Description 19
Recommendation 19

PTAI - Potential Transfer Amount Inconsistency 20
Description 20
Recommendation 21

RSML - Redundant SafeMath Library 22
Description 22
Recommendation 22

L04 - Conformance to Solidity Naming Conventions 23
Description 23
Recommendation 24

L07 - Missing Events Arithmetic 25
Description 25
Recommendation 25

L16 - Validate Variable Setters 26
Description 26
Recommendation 26

L19 - Stable Compiler Version 27
Description 27
Recommendation 27

L20 - Succeeded Transfer Check 28
Description 28
Recommendation 28

Functions Analysis 29
Inheritance Graph 33
Flow Graph 34
Summary 35
Disclaimer 36
About Cyberscope 37

RAIFI Staking Audit 3

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

RAIFI Staking Audit 4

Review

Audit Updates

Initial Audit 11 May 2025

Corrected Phase 2 11 Jun 2025

Source Files

Filename SHA256

Staking.sol ca0a1e7ef15df81b8c455ab2222c1ee6b8af4c6b84c21b19e00867545b7

5958b

RAIFI Staking Audit 5

Contract Readability Comment
The audit scope is to identify security vulnerabilities, validate the business logic, and

recommend potential optimizations. The codebase is incomplete, with key functionalities

missing, references to non-existent functions, and non-functional or broken logic. As such,

the project cannot be considered production-ready. Furthermore, the contract does not

adhere to core Solidity principles related to gas efficiency, code readability, and appropriate

use of data structures. The development team is strongly advised to re-evaluate the

business logic and align the implementation with established Solidity best practices to

ensure both security and maintainability. Even if the identified issues are addressed and

rectified, the contract would remain far from production-ready due to its convoluted and

incomplete nature. It is worth noting that, although automated tools provide valuable

assistance, expert knowledge remains essential for the development of reliable and secure

smart contracts.

RAIFI Staking Audit 6

Findings Breakdown

⬤ Critical 1

⬤ Medium 5

⬤ Minor / Informative 12

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 1 0 0 0

⬤ Medium 5 0 0 0

⬤ Minor / Informative 12 0 0 0

RAIFI Staking Audit 7

Diagnostics
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ ETM Excessive Token Mint Unresolved

⬤ IGU Inconsistent Gons Update Unresolved

⬤ MBD Missing Bonus Deposit Unresolved

⬤ MCS Missing Code Segments Unresolved

⬤ PGA Potential Griefing Attack Unresolved

⬤ UTPD Unverified Third Party Dependencies Unresolved

⬤ MEM Misleading Error Message Unresolved

⬤ MDA Misrepresented Distribution Amount Unresolved

⬤ MAC Missing Access Control Unresolved

⬤ MEM Missing Error Messages Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ PTAI Potential Transfer Amount Inconsistency Unresolved

⬤ RSML Redundant SafeMath Library Unresolved

RAIFI Staking Audit 8

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

⬤ L20 Succeeded Transfer Check Unresolved

RAIFI Staking Audit 9

ETM - Excessive Token Mint

Criticality Critical

Location Staking.sol#L665

Status Unresolved

Description

The contract has the authority to mint tokens. This is possible by calling the rebase

function. Specifically, the method mints to the yieldVestingContract contract an

amount of Rai tokens that is nearly twice the circulating supply of sRai tokens. As a result,

the supply of Rai will be highly inflated.

uint staked = circulatingsRaiSupply();

function circulatingsRaiSupply() public view returns (uint256) {

uint256 totalSupply_sRAI = IERC20(sRAI).totalSupply();

uint256 stakingRAIBalance = IERC20(sRAI).balanceOf(address(this));

uint256 warmupBalance = IERC20(sRAI).balanceOf(warmupContract);

return totalSupply_sRAI.sub(stakingRAIBalance).sub(warmupBalance);

}

uint256 mintBonus=staked + staked.mul(90).div(100);

//2. Min RAI and send to yieldVestingContract

IRaiToken(RAI).mint(yieldVestingContract, mintBonus);

Recommendation

The team should revise the implementation of the rebase method to ensure that token

minting is consistent. Enforcing minting through predetermined algorithms with clearly

defined bounds will enhance both consistency and user trust.

RAIFI Staking Audit 10

IGU - Inconsistent Gons Update

Criticality Medium

Location Staking.sol#L569

Status Unresolved

Description

The contract implements the stake function, enabling users to deposit an _amount of

RAI into the contract. The contract maintains a warmupInfo record for each user,

tracking the cumulative gons contributed through successive calls to the stake function.

This is a redundant and potentially misleading operation, since the staked tokens do not

necessarily support a rebasing mechanism.

gons: info.gons.add(_amount),

Recommendation

The team is advised to revise the current implementation to eliminate redundancies and

misleading operations. This can be accomplished by refactoring the code base to eliminate

references to rebasing parameters.

RAIFI Staking Audit 11

MBD - Missing Bonus Deposit

Criticality Medium

Location Staking.sol#L724

Status Unresolved

Description

The contract implements the insBonus function, which allows the manager to increase

the totalBonus value by a specified _amount . However, this function does not enforce

any checks on the bonus logic nor does it perform any actual token transfers. As a result,

the totalBonus variable can be arbitrarily inflated.

function insBonus(uint _amount) external onlyManager(){

totalBonus = totalBonus.add(_amount);

}

Recommendation

The team is advised to revise the implementation to ensure that updates to totalBonus

reflect real, auditable value changes. Consider integrating validation mechanisms and token

transfer logic to prevent arbitrary or adjustments to internal state variables.

RAIFI Staking Audit 12

MCS - Missing Code Segments

Criticality Medium

Location Staking.sol#L722

Status Unresolved

Description

The contract lacks critical components necessary for its functionality. In its current state, it

cannot achieve its intended design due to these missing elements.

if (distributor != address(0)) {

IDistributor(distributor).distribute();

}

Recommendation

It is required that all contract functionalities are fully developed to ensure viable and

consistent operation.

RAIFI Staking Audit 13

PGA - Potential Griefing Attack

Criticality Medium

Location Staking.sol#L570

Status Unresolved

Description

The contract provides functionality for users to stake assets on behalf of a _recipient .

Upon acceptance of a stake, the contract extends the expiry by a predefined

warmupPeriod. This design permits griefing attacks, where users may stake minimal

amounts for recipients, repeatedly prolonging the recorded expiry for other users to

manipulate the system and potentially extract value.

expiry: epoch.number.add(warmupPeriod)

Recommendation

The team is recommended to establish stringent access controls to guarantee that only

eligible users can make impactful modifications to the contract's state.

RAIFI Staking Audit 14

UTPD - Unverified Third Party Dependencies

Criticality Medium

Location Staking.sol#L578

Status Unresolved

Description

The contract uses an external contract in order to determine the transaction's flow. The

external contract is untrusted. As a result, it may produce security issues and harm the

transactions. In particular the contract calls the updateTotalContributionValue

method from a contributionValueRewards contract, which however is not a known

implementation.

IContributionValueRewardsContract(contributionValueRewards).updateTotalContrib

utionValue(msg.sender,_amount);

Recommendation

The contract should use a trusted external source. A trusted source could be either a

commonly recognized or an audited contract. The pointing addresses should not be able to

change after the initialization.

RAIFI Staking Audit 15

MEM - Misleading Error Message

Criticality Minor / Informative

Location Staking.sol#L642

Status Unresolved

Description

The require statement reverts with the message NotEnoughInterest , which is

misleading, as the contract does not implement an interest mechanism. The message also

lacks clarity on the actual reason for failure, which may lead to user confusion.

require(total > principalAmt && total - principalAmt >= _amount

,"NotEnoughInterest");

Recommendation

The team is advised to revise the error message to more accurately reflect the actual

condition being checked. Clear and context-appropriate revert messages improve contract

transparency, user experience, and debugging efficiency.

RAIFI Staking Audit 16

MDA - Misrepresented Distribution Amount

Criticality Minor / Informative

Location Staking.sol#L690

Status Unresolved

Description

The contract maintains a rebaseHistory mapping that stores key information related to

the rebase process. Among this data, it includes a distributeAmount object, which

does not maintain the actual amount distributed.

uint distributeAmount =

epoch.distribute.mul(rebasePercentage).div(100);

rebaseHistory[epoch.number] = RebaseInfo({

timestamp: block.timestamp,

distributeAmount: epoch.distribute,

circulatingSupply_sRAI: staked

});

Recommendation

The team is advised to monitor the current implementation to ensure it accurately reflects

the actual amount distributed. Clear and accurate state tracking enhances transparency and

system reliability.

RAIFI Staking Audit 17

MAC - Missing Access Control

Criticality Minor / Informative

Location Staking.sol#L586

Status Unresolved

Description

The contract fails to implement adequate access controls, permitting third-party users to

disrupt the claim process. As a result, an unauthorized user can unintentionally withdraw

funds from another user's warmup and delete their warmupInfo .

function claim (address _recipient) public {

...

}

Recommendation

The claim function should implement stringent access controls to guarantee that only

authorized users or the user themselves can execute the action.

RAIFI Staking Audit 18

MEM - Missing Error Messages

Criticality Minor / Informative

Location Staking.sol#L523,525

Status Unresolved

Description

The contract is missing error messages. Specifically, there are no error messages to

accurately reflect the problem, making it difficult to identify and fix the issue. As a result, the

users will not be able to find the root cause of the error.

require(_RAI != address(0))

require(_sRAI != address(0))

Recommendation

The team is suggested to provide a descriptive message to the errors. This message can be

used to provide additional context about the error that occurred or to explain why the

contract execution was halted. This can be useful for debugging and for providing more

information to users that interact with the contract.

RAIFI Staking Audit 19

MEE - Missing Events Emission

Criticality Minor / Informative

Location Staking.sol#L665,734,773,776,783,786

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function rebase() public {...}

function setContract(CONTRACTS _contract, address _address) external

onlyManager() {...}

function setWarmup(uint _warmupPeriod) external onlyManager() {...}

function updateEpoch(uint _epochLength,uint _firstEpochNumber ,uint

_firstEpochBlock,uint _minRebase,uint _maxRebase) external onlyManager()

{...}

function setRebasePercentage(uint _rebasePercentage) external onlyManager()

{...}

unction transferPrincipalOwnership(address from, address to, uint256 amount)

external {...}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

RAIFI Staking Audit 20

PTAI - Potential Transfer Amount Inconsistency

Criticality Minor / Informative

Location Staking.sol#L559

Status Unresolved

Description

The transfer() and transferFrom() functions are used to transfer a specified

amount of tokens to an address. The fee or tax is an amount that is charged to the sender

of an ERC20 token when tokens are transferred to another address. According to the

specification, the transferred amount could potentially be less than the expected amount.

This may produce inconsistency between the expected and the actual behavior.

The following example depicts the diversion between the expected and actual amount.

Tax Amount Expected Actual

No Tax 100 100 100

10% Tax 100 100 90

function stake(uint _amount, address _recipient) external returns (bool)

{

IERC20(RAI).transferFrom(msg.sender, address(this), _amount);

....

deposit: info.deposit.add(_amount),

...

}

RAIFI Staking Audit 21

Recommendation

The team is advised to take into consideration the actual amount that has been transferred

instead of the expected.

It is important to note that an ERC20 transfer tax is not a standard feature of the ERC20

specification, and it is not universally implemented by all ERC20 contracts. Therefore, the

contract could produce the actual amount by calculating the difference between the

transfer call.

 Actual Transferred Amount = Balance After Transfer - Balance Before

Transfer

RAIFI Staking Audit 22

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location Staking.sol

Status Unresolved

Description

SafeMath is a popular Solidity library that provides a set of functions for performing

common arithmetic operations in a way that is resistant to integer overflows and

underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic

operations revert to underflow and overflow. As a result, the native functionality of the

Solidity operations replaces the SafeMath library. Hence, the usage of the SafeMath library

adds complexity, overhead and increases gas consumption unnecessarily in cases where

the explanatory error message is not used.

library SafeMath {...}

Recommendation

The team is advised to remove the SafeMath library in cases where the revert error

message is not used. Since the version of the contract is greater than 0.8.0 then the

pure Solidity arithmetic operations produce the same result.

If the previous functionality is required, then the contract could exploit the unchecked {

... } statement.

Read more about the breaking change on

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking

-changes.

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes

RAIFI Staking Audit 23

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location Staking.sol#L443,477,559,586,626,724,734,773,776,783

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

RAIFI Staking Audit 24

uint256 RAIProfit_

address public RAI

uint _amount

address _recipient

bool _trigger

bool _isPrincipal

CONTRACTS _contract

address _address

uint _warmupPeriod

uint _epochLength

uint _firstEpochBlock

uint _firstEpochNumber

uint _maxRebase

uint _minRebase

...

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

RAIFI Staking Audit 25

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location Staking.sol#L725,774,784

Status Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

totalBonus = totalBonus.add(_amount)

warmupPeriod = _warmupPeriod

rebasePercentage = _rebasePercentage

Recommendation

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

RAIFI Staking Audit 26

L16 - Validate Variable Setters

Criticality Minor / Informative

Location Staking.sol#L527,537,539,540,541,542,543

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

warmupContract=_warmupContract

releasePool = _releasePool

contributionValueRewards=_contributionValueRewards

community=_community

yieldVestingContract = _yieldVestingContract

usdtToken=_usdtToken

daoContract=_daoContract

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

RAIFI Staking Audit 27

L19 - Stable Compiler Version

Criticality Minor / Informative

Location Staking.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.0;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

RAIFI Staking Audit 28

L20 - Succeeded Transfer Check

Criticality Minor / Informative

Location Staking.sol#L562,602,637,647

Status Unresolved

Description

According to the ERC20 specification, the transfer methods should be checked if the result

is successful. Otherwise, the contract may wrongly assume that the transfer has been

established.

IERC20(RAI).transferFrom(msg.sender, address(this), _amount)

IERC20(RAI).transfer(msg.sender, info.deposit)

IERC20(RAI).transfer(staker, _amount)

IERC20(usdtToken).transferFrom(staker,daoContract, burnAmt)

Recommendation

The contract should check if the result of the transfer methods is successful. The team is

advised to check the SafeERC20 library from the Openzeppelin library.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

RAIFI Staking Audit 29

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

SafeMath Library

 add Internal

 sub Internal

 sub Internal

 mul Internal

 div Internal

 div Internal

IERC20 Interface

 decimals External -

 totalSupply External -

 balanceOf External -

 transfer External ✓ -

 allowance External -

 approve External ✓ -

 transferFrom External ✓ -

Address Library

 isContract Internal

RAIFI Staking Audit 30

 sendValue Internal ✓

 functionCall Internal ✓

 functionCall Internal ✓

 functionCallWithValue Internal ✓

 functionCallWithValue Internal ✓

 _functionCallWithValue Private ✓

 functionStaticCall Internal

 functionStaticCall Internal

 functionDelegateCall Internal ✓

 functionDelegateCall Internal ✓

 _verifyCallResult Private

IOwnable Interface

 manager External -

 renounceManagement External ✓ -

 pushManagement External ✓ -

 pullManagement External ✓ -

Ownable Implementation IOwnable

 Public ✓ -

 manager Public -

 renounceManagement Public ✓ onlyManager

 pushManagement Public ✓ onlyManager

 pullManagement Public ✓ -

RAIFI Staking Audit 31

IsRAI Interface

 rebase External ✓ -

 index External -

 mint External ✓ -

 burn External ✓ -

IWarmup Interface

 retrieve External ✓ -

IDistributor Interface

 distribute External ✓ -

IReleasePool Interface

 startRelease External ✓ -

IContributionVa
lueRewardsCo
ntract

Interface

 updateTotalContributionValue External ✓ -

ICommunity Interface

 referrerOf External -

IRaiToken Interface

 name External -

 mint External ✓ -

RAIFI Staking Audit 32

 approve External ✓ -

 transfer External ✓ -

StakingRAI Implementation Ownable

 Public ✓ -

 stake External ✓ -

 claim Public ✓ -

 forfeit External ✓ -

 toggleDepositLock External ✓ -

 unstake External ✓ -

 index Public -

 rebase Public ✓ -

 contractBalance Public -

 circulatingsRaiSupply Public -

 insBonus External ✓ onlyManager

 setContract External ✓ onlyManager

 setWarmup External ✓ onlyManager

 updateEpoch External ✓ onlyManager

 setRebasePercentage External ✓ onlyManager

 principalStakedRAI External -

 getEpochDistribute External -

 getTotalDistributeAmountLast24Hours Public -

 transferPrincipalOwnership External ✓ -

RAIFI Staking Audit 33

Inheritance Graph

RAIFI Staking Audit 34

Flow Graph

RAIFI Staking Audit 35

Summary
RAIFI contract implements a staking mechanism. This audit investigates security issues,

business logic concerns and potential improvements.

RAIFI Staking Audit 36

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Contract Readability Comment
	Findings Breakdown
	Diagnostics
	ETM - Excessive Token Mint
	Description
	Recommendation

	
	IGU - Inconsistent Gons Update
	Description
	Recommendation

	
	MBD - Missing Bonus Deposit
	Description
	Recommendation

	
	MCS - Missing Code Segments
	Description
	Recommendation

	
	PGA - Potential Griefing Attack
	Description
	Recommendation

	
	UTPD - Unverified Third Party Dependencies
	Description
	Recommendation

	
	MEM - Misleading Error Message
	Description
	Recommendation

	
	MDA - Misrepresented Distribution Amount
	Description
	Recommendation

	
	MAC - Missing Access Control
	Description
	Recommendation

	
	MEM - Missing Error Messages
	Description
	Recommendation

	
	MEE - Missing Events Emission
	Description
	Recommendation

	
	PTAI - Potential Transfer Amount Inconsistency
	Description
	
	Recommendation

	
	RSML - Redundant SafeMath Library
	Description
	Recommendation

	
	L04 - Conformance to Solidity Naming Conventions
	Description
	Recommendation

	
	L07 - Missing Events Arithmetic
	Description
	Recommendation

	
	L16 - Validate Variable Setters
	Description
	Recommendation

	
	L19 - Stable Compiler Version
	Description
	Recommendation

	
	L20 - Succeeded Transfer Check
	Description
	Recommendation

	Functions Analysis
	Inheritance Graph
	Flow Graph
	Summary
	Disclaimer
	About Cyberscope

