

Audit Report
RAIFI Community
June 2025

SHA256

096631e23d7b2ee644bd6ca6ed78380786f6e3e422e02c44ec834358bbac9760

Audited by © cyberscope

RAIFI Community Audit 1

Table of Contents
Table of Contents 1
Risk Classification 3
Review 4

Audit Updates 4
Source Files 4

Findings Breakdown 5
Diagnostics 6

PUL - Potentially Unbounded Loop 7
Description 7
Recommendation 7

FSR - Function Self Reference 8
Description 8
Recommendation 8

IRR - Inconsistent Referral Removal 9
Description 9
Recommendation 9

IDI - Immutable Declaration Improvement 10
Description 10
Recommendation 10

IAER - Inefficient Array Element Removal 11
Description 11
Recommendation 11

MCRC - Missing Cyclic Reference Check 12
Description 12
Recommendation 12

MEE - Missing Events Emission 13
Description 13
Recommendation 13

L04 - Conformance to Solidity Naming Conventions 14
Description 14
Recommendation 14

L14 - Uninitialized Variables in Local Scope 15
Description 15
Recommendation 15

L16 - Validate Variable Setters 16
Description 16
Recommendation 16

L19 - Stable Compiler Version 17
Description 17

RAIFI Community Audit 2

Recommendation 17
Functions Analysis 18
Inheritance Graph 19
Flow Graph 20
Summary 21
Disclaimer 22
About Cyberscope 23

RAIFI Community Audit 3

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

RAIFI Community Audit 4

Review

Audit Updates

Initial Audit 18 Jun 2025

Source Files

Filename SHA256

Community.sol 096631e23d7b2ee644bd6ca6ed78380786f6e3e422e02c44ec834358bb

ac9760

RAIFI Community Audit 5

Findings Breakdown

⬤ Critical 1

⬤ Medium 2

⬤ Minor / Informative 8

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 1 0 0 0

⬤ Medium 2 0 0 0

⬤ Minor / Informative 8 0 0 0

RAIFI Community Audit 6

Diagnostics
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ PUL Potentially Unbounded Loop Unresolved

⬤ FSR Function Self Reference Unresolved

⬤ IRR Inconsistent Referral Removal Unresolved

⬤ IDI Immutable Declaration Improvement Unresolved

⬤ IAER Inefficient Array Element Removal Unresolved

⬤ MCRC Missing Cyclic Reference Check Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L14 Uninitialized Variables in Local Scope Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

RAIFI Community Audit 7

PUL - Potentially Unbounded Loop

Criticality Critical

Location Community.sol#L55

Status Unresolved

Description

The _isReferrerInReferralChain function includes a depthLimit variable inside a

loop. This variable is declared and reset on every iteration, it

could therefore lead to unbounded execution.

function _isReferrerInReferralChain(address _member, address

_potentialReferrer) internal view returns (bool) {

address current = members[_member].referrer;

while (current != address(0)) {

if (current == _potentialReferrer) {

return true;

}

current = members[current].referrer;

uint depthLimit = 100;

if (depthLimit-- == 0) break;

}

return false;

}

Recommendation

The team is advised to remove the depthLimit declaration from the for loop and only

decrement it within the loop to enforce optimal traversal depth.

RAIFI Community Audit 8

FSR - Function Self Reference

Criticality Medium

Location Community.sol#L124

Status Unresolved

Description

The _getFullReferralTreeStakeInternal function recursively calls itself with

addresses from the directReferrals array. If any of these addresses is the zero address, the

function lacks a termination mechanism, potentially resulting in an unbounded recursive

loop.

(uint subTreeCount, uint subTreeStake) =

_getFullReferralTreeStakeInternal(directReferrals[i]);

Recommendation

The team is advised to introduce an explicit check for address(0) before making the

recursive call. This will ensure proper termination and protect against unintended execution

paths.

RAIFI Community Audit 9

IRR - Inconsistent Referral Removal

Criticality Medium

Location Community.sol#L82

Status Unresolved

Description

The updateReferrer function attempts to remove msg.sender from the old referrer’s

referrals array by shifting elements and then calling .pop() . However, the current

implementation removes the last element of the array unconditionally after the shift, which

may not correspond to msg.sender. This can lead to the unintended removal of an unrelated

third party from the referral list.

for (uint j = i; j < oldReferrals.length - 1; j++) {

members[oldReferrer].referrals[j] = oldReferrals[j + 1];

}

 members[oldReferrer].referrals.pop();

Recommendation

The team is advised to ensure that only the intended element is removed to maintain referral

integrity.

RAIFI Community Audit 10

IDI - Immutable Declaration Improvement

Criticality Minor / Informative

Location Community.sol#L29

Status Unresolved

Description

The contract declares state variables that their value is initialized once in the constructor

and are not modified afterwards. The immutable is a special declaration for this kind of

state variables that saves gas when it is defined.

owner

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain

optimizations. This can reduce the amount of storage and computation required by the

contract, and make it more gas-efficient.

RAIFI Community Audit 11

IAER - Inefficient Array Element Removal

Criticality Minor / Informative

Location Community.sol#L79

Status Unresolved

Description

The contract utilizes a method for removing elements from an array. Specifically, the

function employs a for loop to iterate through the array elements, shifting each element

down by one index to remove the specified element. This approach, while functional, could

be more optimal in terms of gas usage and execution time, especially as the size of the

array grows.

for (uint j = i; j < oldReferrals.length - 1; j++) {

members[oldReferrer].referrals[j] = oldReferrals[j + 1];

}

Recommendation

It is recommended to enhance the efficiency of the function by adopting a more

gas-efficient approach. This can be achieved by swapping the last element of the array with

the element intended for removal, and then calling the pop method to remove the last

element. This method significantly reduces the number of operations required, especially for

large arrays, optimizing gas costs and execution time.

RAIFI Community Audit 12

MCRC - Missing Cyclic Reference Check

Criticality Minor / Informative

Location Community.sol#L68

Status Unresolved

Description

The updateReferrer function allows existing members to assign a new referrer but does

not perform a check for cyclic references. This enables users to create circular referral

structures, which can lead to code inconsistencies.

function updateReferrer(address _newReferrer) external {

require(isMember[msg.sender], "Not a member yet.");

require(msg.sender != _newReferrer, "Cannot refer yourself.");

address oldReferrer = members[msg.sender].referrer;

...

}

Recommendation

The team is advised to implement the existing cyclic reference check in updateReferrer

to maintain consistency and prevent referral graph corruption.

RAIFI Community Audit 13

MEE - Missing Events Emission

Criticality Minor / Informative

Location Community.sol#L33

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function setStakingContract(address _stakingContract) external onlyOwner {

require(_stakingContract != address(0), "Staking contract address cannot be

zero.");

stakingContract = _stakingContract;

staking= IStakingRAI(stakingContract);

}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

RAIFI Community Audit 14

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location Community.sol#L33,39,68,137

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

address _stakingContract

address _referrer

address _newReferrer

uint256 _level

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

RAIFI Community Audit 15

L14 - Uninitialized Variables in Local Scope

Criticality Minor / Informative

Location Community.sol#L44

Status Unresolved

Description

Using an uninitialized local variable can lead to unpredictable behavior and potentially

cause errors in the contract. It's important to always initialize local variables with

appropriate values before using them.

MemberInfo memory newMember

Recommendation

By initializing local variables before using them, the contract ensures that the functions

behave as expected and avoid potential issues.

RAIFI Community Audit 16

L16 - Validate Variable Setters

Criticality Minor / Informative

Location Community.sol#L30

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

stakingContract = _stakingContract

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

RAIFI Community Audit 17

L19 - Stable Compiler Version

Criticality Minor / Informative

Location Community.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.20;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

RAIFI Community Audit 18

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

IStakingRAI Interface

 principal External -

Community Implementation

 Public ✓ -

 setStakingContract External ✓ onlyOwner

 joinCommunity External ✓ -

 _isReferrerInReferralChain Internal

 updateReferrer External ✓ -

 levelOf Public -

 referrerOf External -

 referralsOf Public -

 getReferralCounts Public -

 _getFullReferralTreeStakeInternal Internal

 updateMemberLevel External ✓ onlyOwner

 getFullReferralTreeWithStakeInfo Public -

 addressToString Internal

 _uintToHexChar Internal

 uint256ToString Internal

RAIFI Community Audit 19

Inheritance Graph

RAIFI Community Audit 20

Flow Graph

RAIFI Community Audit 21

Summary
RAIFI contract implements a referral mechanism. This audit investigates security issues,

business logic concerns and potential improvements.

RAIFI Community Audit 22

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Findings Breakdown
	Diagnostics
	PUL - Potentially Unbounded Loop
	Description
	Recommendation

	
	FSR - Function Self Reference
	Description
	Recommendation

	
	IRR - Inconsistent Referral Removal
	Description
	Recommendation

	
	IDI - Immutable Declaration Improvement
	Description
	Recommendation

	
	IAER - Inefficient Array Element Removal
	Description
	Recommendation

	
	MCRC - Missing Cyclic Reference Check
	Description
	Recommendation

	
	MEE - Missing Events Emission
	Description
	Recommendation

	
	L04 - Conformance to Solidity Naming Conventions
	Description
	Recommendation

	L14 - Uninitialized Variables in Local Scope
	Description
	Recommendation

	
	L16 - Validate Variable Setters
	Description
	Recommendation

	
	L19 - Stable Compiler Version
	Description
	Recommendation

	Functions Analysis
	Inheritance Graph
	Flow Graph
	Summary
	Disclaimer
	About Cyberscope

