

Audit Report
RAI
June 2025

SHA256

799fd63a3dee150976955cd0093c8cc221b1a1a5a8ca37b41adcde27787be4f2

Audited by © cyberscope

RAI Token Audit 1

Analysis
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Unresolved

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Unresolved

⬤ MT Mints Tokens Unresolved

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

RAI Token Audit 2

Diagnostics
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ ICM Inefficient Cooldown Mechanism Unresolved

⬤ AOI Arithmetic Operations Inconsistency Unresolved

⬤ MMN Misleading Method Naming Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ RSML Redundant SafeMath Library Unresolved

⬤ RSRS Redundant SafeMath Require Statement Unresolved

⬤ UTPD Unverified Third Party Dependencies Unresolved

⬤ L02 State Variables could be Declared Constant Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

RAI Token Audit 3

Table of Contents
Analysis 1
Diagnostics 2
Table of Contents 3
Risk Classification 5
Review 6

Audit Updates 6
Source Files 6

Findings Breakdown 7
ST - Stops Transactions 8

Description 8
Recommendation 9

ELFM - Exceeds Fees Limit 10
Description 10
Recommendation 10

MT - Mints Tokens 12
Description 12
Recommendation 12

ICM - Inefficient Cooldown Mechanism 13
Description 13
Recommendation 13

AOI - Arithmetic Operations Inconsistency 14
Description 14
Recommendation 14

MMN - Misleading Method Naming 15
Description 15
Recommendation 15

MEE - Missing Events Emission 16
Description 16
Recommendation 16

RSML - Redundant SafeMath Library 17
Description 17
Recommendation 17

RSRS - Redundant SafeMath Require Statement 18
Description 18
Recommendation 18

UTPD - Unverified Third Party Dependencies 19
Description 19
Recommendation 19

L02 - State Variables could be Declared Constant 20

RAI Token Audit 4

Description 20
Recommendation 20

L04 - Conformance to Solidity Naming Conventions 21
Description 21
Recommendation 22

L16 - Validate Variable Setters 23
Description 23
Recommendation 23

L19 - Stable Compiler Version 24
Description 24
Recommendation 24

Functions Analysis 25
Inheritance Graph 26
Flow Graph 27
Summary 28
Disclaimer 29
About Cyberscope 30

RAI Token Audit 5

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

RAI Token Audit 6

Review

Audit Updates

Initial Audit 01 May 2025

Source Files

Filename SHA256

RaiToken.sol 799fd63a3dee150976955cd0093c8cc221b1a1a5a8ca37b41adcde2778

7be4f2

RAI Token Audit 7

Findings Breakdown

⬤ Critical 2

⬤ Medium 1

⬤ Minor / Informative 11

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 2 0 0 0

⬤ Medium 1 0 0 0

⬤ Minor / Informative 11 0 0 0

RAI Token Audit 8

ST - Stops Transactions

Criticality Critical

Location RaiToken.sol#L3905

Status Unresolved

Description

The contract owner has the authority to stop the sales for all users excluding the owner. The

owner may take advantage of it through the feeReceiver . If the feeReceiver is a

malicious contract it may lead to transactions reverting. As a result, the contract may

operate as a honeypot.

if (sellFee > 0) {

amount = amount - sellFee;

_balances[feeReceiver] += sellFee;

emit Transfer(sender, feeReceiver, sellFee);

emit FeeTaken(sender, feeReceiver, false, amount, sellFee);

IFeeReceiver(feeReceiver).triggerSwap(sellFee);

}

In addition, the owner may stop all buys and sell by revoking the COOLING_PROTECTOR

from the mainPair . As a result all transaction will fail.

function _transfer(address sender, address recipient, uint256 amount) internal

virtual override {

if((sender == mainPair || recipient == mainPair) // isTrade

&& !hasRole(COOLING_PROTECTOR,sender)

&& !hasRole(COOLING_PROTECTOR,recipient)){

revert("CoolingPeriod");

}

...

}

RAI Token Audit 9

Recommendation

The contract could embody a check for not allowing setting the _maxTxAmount less than

a reasonable amount. A suggested implementation could check that the minimum amount

should be more than a fixed percentage of the total supply. The team should carefully

manage the private keys of the owner’s account. We strongly recommend a powerful

security mechanism that will prevent a single user from accessing the contract admin

functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

Permanent Solution:

● Renouncing the ownership, which will eliminate the threats but it is non-reversible.

RAI Token Audit 10

ELFM - Exceeds Fees Limit

Criticality Critical

Location RaiToken.sol#L3859

Status Unresolved

Description

The contract owner has the authority to increase over the allowed limit of 25%. The owner

may take advantage of it by calling the setRatio function with a high percentage value.

function setRatio(uint8 ratioType,uint256 ratio) external onlyDefaultAdmin

{

require(ratio <= PRECISION, "Exceeds precision");

if(ratioType ==0){

buyFeeRatio = ratio;

} else {

sellFeeRatio = ratio;

}

emit FeeRatioChanged(ratioType,ratio);

}

Recommendation

The contract could embody a check for the maximum acceptable value. The team should

carefully manage the private keys of the owner’s account. We strongly recommend a

powerful security mechanism that will prevent a single user from accessing the contract

admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

RAI Token Audit 11

Permanent Solution:

● Renouncing the ownership, which will eliminate the threats but it is non-reversible.

RAI Token Audit 12

MT - Mints Tokens

Criticality Minor / Informative

Location RaiToken.sol#L3787

Status Unresolved

Description

The contract owner has the authority to mint tokens. The owner may take advantage of it by

calling the mint function. As a result, the contract tokens will be highly inflated.

function mint(address account_, uint256 amount_) external onlyVault {

mint(account, amount_);

}

modifier onlyVault() {

require(hasRole(MINT, msg.sender), "VaultOwned: caller is not the

Vault");

_;

}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

Permanent Solution:

● Renouncing the ownership, which will eliminate the threats but it is non-reversible.

RAI Token Audit 13

ICM - Inefficient Cooldown Mechanism

Criticality Medium

Location RaiToken.sol#L3888

Status Unresolved

Description

The contract implements a clause for the case of buys and sells. Specifically, in the case of

such a transaction, both the user and the mainPair must possess the role of the

COOLING_PROTECTOR . This is an inefficient approach to implement such a mechanism as it

would require all users to be whitelisted at all times. The current implementation effectively

prevents users from finalizing their transactions.

if((sender == mainPair || recipient == mainPair) // isTrade

&& !hasRole(COOLING_PROTECTOR,sender)

&& !hasRole(COOLING_PROTECTOR,recipient)){

revert("CoolingPeriod");

}

Recommendation

The team is advised to revise the implementation of the cooldown mechanism to ensure

consistency of transfers for all users.

RAI Token Audit 14

AOI - Arithmetic Operations Inconsistency

Criticality Minor / Informative

Location RaiToken.sol#L3921

Status Unresolved

Description

The contract uses both the SafeMath library and native arithmetic operations. The SafeMath

library is commonly used to mitigate vulnerabilities related to integer overflow and underflow

issues. However, it was observed that the contract also employs native arithmetic operators

(such as +, -, *, /) in certain sections of the code.

The combination of SafeMath library and native arithmetic operations can introduce

inconsistencies and undermine the intended safety measures. This discrepancy creates an

inconsistency in the contract's arithmetic operations, increasing the risk of unintended

consequences such as inconsistency in error handling, or unexpected behavior.

_balances[recipient] = _balances[recipient].add(amount);

Recommendation

To address this finding and ensure consistency in arithmetic operations, it is recommended

to standardize the usage of arithmetic operations throughout the contract. The contract

should be modified to either exclusively use SafeMath library functions or entirely rely on

native arithmetic operations, depending on the specific requirements and design

considerations. This consistency will help maintain the contract's integrity and mitigate

potential vulnerabilities arising from inconsistent arithmetic operations.

RAI Token Audit 15

MMN - Misleading Method Naming

Criticality Minor / Informative

Location RaiToken.sol#L3791

Status Unresolved

Description

Methods can have misleading names if their names do not accurately reflect the

functionality they contain or the purpose they serve. The contract uses some method

names that are too generic or do not clearly convey the underneath functionality. Misleading

method names can lead to confusion, making the code more difficult to read and

understand. In this case, the contract defines the onlyVault modifier and grants minting

rights to the deployer, which may not correspont to a vault contract.

modifier onlyVault() {

require(hasRole(MINT, msg.sender), "VaultOwned: caller is not the

Vault");

_;

}

Recommendation

It's always a good practice for the contract to contain method names that are specific and

descriptive. The team is advised to keep in mind the readability of the code.

RAI Token Audit 16

MEE - Missing Events Emission

Criticality Minor / Informative

Location RaiToken.sol#L3859

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function setFeeReceiver(address _feeReceiver) external onlyDefaultAdmin {

feeReceiver = _feeReceiver;

_setupRole(INTERN_SYSTEM,feeReceiver);

_setupRole(COOLING_PROTECTOR,feeReceiver);

}

function setMintRole(address account) external onlyDefaultAdmin returns

(bytes32) {

_setupRole(MINT, account);

return MINT;

}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

RAI Token Audit 17

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location RaiToken.sol

Status Unresolved

Description

SafeMath is a popular Solidity library that provides a set of functions for performing

common arithmetic operations in a way that is resistant to integer overflows and

underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic

operations revert to underflow and overflow. As a result, the native functionality of the

Solidity operations replaces the SafeMath library. Hence, the usage of the SafeMath library

adds complexity, overhead and increases gas consumption unnecessarily in cases where

the explanatory error message is not used.

library SafeMath {...}

Recommendation

The team is advised to remove the SafeMath library in cases where the revert error

message is not used. Since the version of the contract is greater than 0.8.0 then the

pure Solidity arithmetic operations produce the same result.

If the previous functionality is required, then the contract could exploit the unchecked {

... } statement.

Read more about the breaking change on

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking

-changes.

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes

RAI Token Audit 18

RSRS - Redundant SafeMath Require Statement

Criticality Minor / Informative

Location RaiToken.sol#L3463

Status Unresolved

Description

The contract utilizes a require statement within the add function aiming to prevent

overflow errors. This function is designed based on the SafeMath library's principles. In

Solidity version 0.8.0 and later, arithmetic operations revert on overflow and underflow,

making the overflow check within the function redundant. This redundancy could lead to

extra gas costs and increased complexity without providing additional security.

function add(uint256 a, uint256 b) internal pure returns (uint256)

{

 uint256 c = a + b;

 require(c >= a, "SafeMath: addition overflow");

 return c;

}

Recommendation

It is recommended to remove the require statement from the add function since the

contract is using a Solidity pragma version equal to or greater than 0.8.0. By doing so, the

contract will leverage the built-in overflow and underflow checks provided by the Solidity

language itself, simplifying the code and reducing gas consumption. This change will

uphold the contract's integrity in handling arithmetic operations while optimizing for

efficiency and cost-effectiveness.

RAI Token Audit 19

UTPD - Unverified Third Party Dependencies

Criticality Minor / Informative

Location RaiToken.sol#L3916

Status Unresolved

Description

The contract uses an external contract in order to determine the transaction's flow. The

external contract is untrusted. As a result, it may produce security issues and harm the

transactions.

IFeeReceiver(feeReceiver).triggerSwap(sellFee);

Recommendation

The contract should use a trusted external source. A trusted source could be either a

commonly recognized or an audited contract. The pointing addresses should not be able to

change after the initialization.

RAI Token Audit 20

L02 - State Variables could be Declared Constant

Criticality Minor / Informative

Location RaiToken.sol#L3825,3826

Status Unresolved

Description

State variables can be declared as constant using the constant keyword. This means that

the value of the state variable cannot be changed after it has been set. Additionally, the

constant variables decrease gas consumption of the corresponding transaction.

uint256 public buyFeeRatio=0;

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a

state variable cannot be changed by any function in the contract. This can be useful for

storing values that are important to the contract's behavior, such as the contract's address

or the maximum number of times a certain function can be called. The team is advised to

add the constant keyword to state variables that never change.

RAI Token Audit 21

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location RaiToken.sol#L3738,3810,3859

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

contract RAIToken is ERC20Token {

 using SafeMath for uint256;

 address public mainPair;

 address public feeReceiver = 0x3EE90695ADbfD84bEdf710Aab2a17E718B311235;//

DAO contract

 string private nameToken ="RAI"

Role(address account

RAI Token Audit 22

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

RAI Token Audit 23

L16 - Validate Variable Setters

Criticality Minor / Informative

Location RaiToken.sol#L3857,3860

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

feeReceiver = _feeReceiver;

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

RAI Token Audit 24

L19 - Stable Compiler Version

Criticality Minor / Informative

Location RaiToken.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.20;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

RAI Token Audit 25

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

RAIToken Implementation ERC20Token

 Public ✓ ERC20Token

 setMainPair External ✓ onlyDefaultAdm
in

 setFeeReceiver External ✓ onlyDefaultAdm
in

 setMintRole External ✓ onlyDefaultAdm
in

 setRatio External ✓ onlyDefaultAdm
in

 _transfer Internal ✓

 _isTradeAndNotInSystem Internal

RAI Token Audit 26

Inheritance Graph

RAI Token Audit 27

Flow Graph

RAI Token Audit 28

Summary
RAI contract implements a token mechanism. This audit investigates security issues,

business logic concerns and potential improvements. There are some functions that can be

abused by the owner like stop transactions, manipulate the fees and mint tokens. if the

contract owner abuses the mint functionality, then the contract will be highly inflated. A

multi-wallet signing pattern will provide security against potential hacks. Temporarily locking

the contract or renouncing ownership will eliminate all the contract threats.

RAI Token Audit 29

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Analysis
	
	Diagnostics
	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Findings Breakdown
	ST - Stops Transactions
	Description
	
	Recommendation

	
	ELFM - Exceeds Fees Limit
	Description
	Recommendation

	
	MT - Mints Tokens
	Description
	Recommendation

	ICM - Inefficient Cooldown Mechanism
	Description
	Recommendation

	
	AOI - Arithmetic Operations Inconsistency
	Description
	Recommendation

	
	MMN - Misleading Method Naming
	Description
	Recommendation

	
	MEE - Missing Events Emission
	Description
	Recommendation

	
	RSML - Redundant SafeMath Library
	Description
	Recommendation

	
	RSRS - Redundant SafeMath Require Statement
	Description
	Recommendation

	
	UTPD - Unverified Third Party Dependencies
	Description
	Recommendation

	
	L02 - State Variables could be Declared Constant
	Description
	Recommendation

	
	L04 - Conformance to Solidity Naming Conventions
	Description
	
	Recommendation

	
	L16 - Validate Variable Setters
	Description
	Recommendation

	
	L19 - Stable Compiler Version
	Description
	Recommendation

	Functions Analysis
	Inheritance Graph
	Flow Graph
	Summary
	Disclaimer
	About Cyberscope

